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Abstract. – In this paper, we demonstrate that Buckman’s law of covariation, describing the cases of extreme variability

observed in ammonoids, can be explained in a simple way by analysing the internal shell geometry. This geometry can

be characterized by the amount of lateral and ventral curvature of the shell which controls the thickness of the mantle

and the concentration of morphogens present in the shell-secreting epithelium. The most salient ornamentation is pre-

sent where the whorls are most curved, shells with slight angular bulges often being spinose or carinate and flat ones

being almost smooth. These observations agree with a morphogenetic model based on Meinhardt’s reaction – diffusion

mechanisms [Meinhardt 1995].

Une explication morphogénétique de la loi de covariation de Buckman

Mots clés. – Variabilité morphologique, Ammonoidés, Covariation, Pathologie, Morphogenèse

Résumé. – Nous montrons ici que les cas d’extrême variabilité découverts au 19
e
siècle et décrits chez les ammonites

comme résultant de la loi de covariation de Buckman [1887] dépendent essentiellement de la géométrie interne des co-

quilles de ces organismes. Cette géométrie peut être caractérisée en termes de degré de courbure ventrale et latérale et

ces paramètres contrôlent la concentration de morphogènes présents dans l’épithelium qui sécrète la coquille. Les orne-

ments les plus saillants sont présents là où les tours sont les plus incurvés et les régions plates de la coquille sont

presque lisses. Ces observations sont testées ici dans le cadre des modèles de réaction-diffusion développés par Mein-

hardt (1995).

INTRODUCTION

Reaction-diffusion numerical models simulating morphogenesis

of different animal ornamental patterns were first created by

Alan Turing [1952] and later completed by Meinhardt and

Klingler [1988] and Meinhardt [1995]. Meinhardt (loc. cit.)

in particular demonstrated that such models allowed to gen-

erate all the different kinds of pigmentation patterns ob-

served on molluscan shells. Several authors have recently

realized that Meinhardt’s equations can also be used to

simulate the morphogenesis of ornamental patterns such as

ribs and striation of ammonite shells [Savazzi, 1990 ;

Bucher et al., 1996 and Hammer and Bucher 1998]. This

idea was based on the fact that certain complex morphologi-

cal pigmentation patterns, illustrated by Meinhardt [1995],

are indeed quasi identical to some of the most complex or-

namentations observed in ammonites (see fig 1a and b).

The goal of the present paper is to discuss a very old

morphogenetical problem in the light of these recent results.

One of the most important open problems in under-

standing morphological evolution of ammonites is known as

covariation. First observed by Buckman [1887] in Sonninia

and Amaltheus (fig. 2) and rediscussed later by Westermann

[1966], covariation was originally described as follows :

“Roughly speaking, inclusion and compression of the

whorls correlate with the amount of ornament – the most or-

nate species being the more evolute (i.e. loosely coiled) and

having almost circular whorls…”

In 1999, Guex proposed the hypothesis that covariation

depends on internal shell geometry [see also Guex, 2001].

Internal shell geometry being defined by the lateral and

ventral curvature of the shell which controls the thickness

of the mantle and the concentration of morphogens present

in that shell-secreting epithelium. The most salient orna-

mentation is present where the whorls are the most curved,

shells with slight angular bulges often being spinose or

carinate and flat ones being almost smooth. As a general

rule, juvenile ammonites belonging to peramorphic lineages

are more evolute and have a greater lateral curvature of the

whorl than adult ones.

These observations have recently been tested by one of

us (A. K. : see below) within the conceptual framework of

Meinhardt’s reaction – diffusion (RD) models [Meinhardt,

1995]. It should be noted that our RD model is an abstrac-

tion. The chemical nature of morphogens is not known.

They could be transmembranar proteins or even free

intercellular ions.

To show the molecular plausibility of these ideas, we

constructed a numerical reaction-diffusion (activator – in-
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hibitor) model in order to simulate intensity of ribbing and

spination on ammonite shells. A summary of this simulation

is given in the Appendix. Our aim was to check that varia-

tions of the shell patterns can be induced either by small

changes of mantle curvature, or by slight modifications of

the parameters governing the rate of the involved chemical

reactions – in particular the mantle’s local thickness or the

variations of the mantle’s thickness.

Following Meinhardt [1995], we assume that the pat-

terning process takes place in the mantle of the ammonite,

along the growing edge of its shell. Ribs and spines are gen-

erated by cells belonging to the animal’s mantle. The inten-

sity of the shell’s corrugations is likely to be proportional to

the concentration of some morphogen in the cells of the

mantle : only those cells presenting a high concentration of

certain morphogens take an active part in generating shell

ornaments (i.e. ribs and/or spines).

Thus, the cells located in a thin and elongated domain at

the front of the mantle are supposed to contribute to the po-

sitioning of ribs and spines on the shell. According to our

numerical simulations, the average number of neighbours of

the mantle cells appears, in the active region, to be impor-

tant for pattern formation ; this is linked with diffusion of

certain chemicals. In the formal model described below, we

have fixed the border conditions as follows : the shell be-

haves as a barrier to the diffusion of the activator and the in-

ternal part of the mantle allows its internal diffusion; the in-

hibitor itself is restricted to the mantle.

As a consequence, cells located in the vicinity of the

shell will tend to accumulate the activator, whereas those on

the inner side of the mantle can expel it. In addition, cells

near the region of the mantle, which are characterized by a

strong curvature, have less space for diffusion, and this will

increase the considered effect. In other words the geometry
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FIG. 1. – Comparison between pigmentation pattern generated by Mein-

hardt equations [A : redrawn from Meinhardt, 1995 fig. 4.8] and the ven-

tral ribbing of a Collina [B : redrawn from Guex 1973].

FIG. 1. – Comparaison entre les motifs de pigmentation générés par les

équations de Meinhardt et la costulation ventrale d’une Collina.

FIG. 2. – Example of covariation in the genus Amaltheus [reinterpreted, from Mattei, 1985].

FIG. 2. – Exemple de covariation chez les Amaltheus.



of the mantle has a strong influence on the concentration of

diffusing morphogens. Figure 3 illustrates this effect in the

case of a Gierer-Meinhardt couple of activator-inhibitor

substances (see Appendix). We observe that the highest

concentration of morphogens appears at the position of

maximal curvature (which is correlated with the maximum

thickness of the mantle). If the simulated shell has two such

highly curved regions, one would observe a concentration

peak at each bending point. Note that the shape of the ribs

can be simulated by slightly modifying the geometry by

considering the domain having the shape of a lunule.

Pattern modifications on injured animals support these

views. Figure 4a shows an ammonite the genus of which

normally presents two parallel rows of spines. The usual

pattern is visible on the earlier parts of the animal’s shell,

located in the vicinity of the umbilicus. Part of the shell was

damaged during a growing phase (arrow in fig. 4a). Interest-

ingly enough, the recovered animal exhibits only one row of

spines, which moreover has been displaced in the symmetry

plane of the animal’s shell [from Guex, 1967].

When an injury is located in the animal’s plane of sym-

metry, we observe an atrophy of median ornamentation and

its replacement by lateral ornaments. This phenomenon is

called ornamental compensation [Guex, 1967].
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FIG. 3.– In our simulation, the domain of the mantle responsible for the shell corrugations is assumed to be conical. The diagram is a frontal view and its

position can be either lateral or ventral. The concentration of activator (left) and inhibitor (right) morphogens interacting according to the Gierer-Mein-

hardt model are plotted. Dark grey corresponds to high concentrations while light grey is assigned to low ones. The maximal concentrations of both mor-

phogens are observed at the apex of the ogival domain.

FIG. 3. – Dans notre simulation, la partie du manteau responsable des reliefs coquilliers est considéré comme conique. Le diagramme est une vue frontale

qui peut être soit latérale, soit ventrale ; il représente la concentration en morphogènes activateur (à gauche) et inhibiteur (à droite) interagissant selon le

modèle de Gierer-Meinhardt. Les tons foncés correspondent à de fortes concentrations, les tons clairs à de faibles concentrations. Les concentrations

maximales des deux morphogènes s’observent à l’apex du domaine ogival.

FIG. 4.– Ammonite belonging to a genus normally characterized by two rows of spines. At a given stage of its life, this animal was injured as shown by ar-

row. In the subsequent portion of the animal, one observes only one row of spines; this loss of ornamentation is fully in agreement with our model.

FIG. 4. – Ammonite appartenant à un genre normalement caractérisé par deux rangées d’épines. Cet animal a été blessé au cours de sa vie (flèche). Par la

suite, une seule des rangées d’épines persiste ; cette perte ornementale est parfaitement en accord avec notre modèle.



This general rule of recovery not only accords fully

with our model, but can also be easily reproduced in labora-

tory by artificially injuring living molluscs. It is not yet

known if the grafting of healthy tissue collected at the same

location of the injured part can regenerate the original lost

ornamentation.

CONCLUSIONS

Our model explains that the intensity of ornamentation (rib-

bing and/or spination) depends on the geometry of the man-

tle (more or less strong curvature), thus providing a simple

explanation of Buckman’s law of covariation.

It also explains one major phenomenon which is com-

mon in ammonite evolutionary history, i.e. the frequent

trend where evolute ancestral spinose or coarsely ornate

forms give rise to involute smooth or weakly ornamented

descendants. To take just two examples, we can cite the

Arietitidae giving rise to the smooth oxycone Oxynoticeratidae,

and the evolute strongly ribbed Tauromeniceras giving rise to

the smooth Oxyparoniceras [see other examples in Guex,

2001].

Our present model also provides a simple explanation

of ornamental compensation, that is to say disappearance of

the ornament generated by an injured and destroyed part of

the mantle and its replacement by the adjacent ornament.

Appendix (by A.K.)

Numerical solution of the Gierer-Meinhardt equations for a cross-section through an ammonite shell,

orthogonal to the growth axis

We present a numerical solution of the following reaction-diffu-

sion equations of Gierer-Meinhardt in a bidimensional domain :

∂
t
a = D

a
∆a + ρ

a
a2 / h – µ

a
a + σ

a

∂
t
h = D

h
∆h + ρ

h
a2 – µ

h
h

with ∆ ≡ ∂ / ∂2 2

x + ∂ ∂2 2
/ y; a(x,t) and h(x,t) corresponding to the ac-

tivator and inhibitor morphogens, respectively. In the numerical

simulation, the constants have the following values :

D
a
= 0.012 ρ

a
= 1.0 µ

a
= 0.001 σ

a
= 0.002

D
h
= 0.4 ρ

h
= 1.0 µ

h
= 0.001

The units of distance, time and concentration are arbitrary !

The domain of computation corresponds to the union of the two

following areas :

1) area delimited by two arcs of circles {(–33.5120,

–12.1072), 50.00} and {(–24.5332, –11.5931), 40.00}, and contai-

ned in the region x ≥ 0 and y ≥ –0.052;
2) area delimited by two arcs of circles {(33.5120, –12.1072),

50.00} and {(24.5332, –11.5931), 40.00}, and contained in the re-

gion x ≤ 0 and y ≥ –0.052.
The boundaries of the domains are supposed to be impervious

to the inhibitor. The outer boundary (arc of circle of radius 50.00)

is impervious to the activator whereas the other boundaries are

pervious. The choice of these boundary conditions is motivated by

the following arguments : The activator is supposed to diffuse

freely outside the mantle’s cells into the environment (intercellular

medium and sea water). However, the mantle being in close

contact with the shell of the ammonite , the molecules of the acti-

vator cannot transit through the shell. Therefore the regions of the

mantle in contact with the shell are considered to be impervious to

the activator.

The reaction-diffusion equations are solved numerically on a

hexagonal mesh containing 1500 nodes corresponding to a hexa-

gon radius of 0.23 units. The concentrations a(x,t) and h(x,t) are

determined at each node of the mesh. The initial values of the

concentrations at t=0 correspond approximatively to the values ta-

ken from the (unstable !) homogeneous stationary solution. We

add small random deviations ε (x,0) to the concentrations of the ac-
tivator to allow the system to leave the initially homogeneous

state. The initial values are thus given by :

a(x,0) = 1.0 [ 1. + ε (x,0) ] with –0.05 < ε (x,0) < +0.05
h(x,0) = 100.0.

The stationary inhomogeneous solution is found using a stan-

dard iterative procedure.
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